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Abstract

This paper generalizes for non-Abelian theta functions a number of formulae valid for theta
functions of Jacobian varieties. The addition formula, the relation with the Szégo kernel and with
the multicomponent KP hierarchy and the behavior under cyclic coverings are given.
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1. Introduction

Fay’s addition formula for theta functions of Jacobigkhas turned out to be highly
relevant in a number of problems: geometric properties of Jacobians (existence of trisecants
to their Kummer varieties), infinitesimal behavior of theta functions of Jacobians (KP and
KdV equations) and algebraic formulations of certain aspects of conformal field theories.
On the other hand, deep relations between moduli spaces of vector bundles and Jacobians
varieties[2,11] has been already established. Therefore, it is thus natural to expect simi-
larities between the properties of classical theta functions and those of non-Abelian theta
functions, in particular, an analogue of Fay’s addition formula.

In fact, the existence of generalized addition formulae for non-Abelian theta functions
has been conjectured by Schork (conjecture IV.L8f) when generalizing for higher rank
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Raina’s approach té— systemq16]. Therefore, this kind of formulae should be useful
tools when studying Schork’s correlation functions as well as non-Abelian generalizations
of multiplicative Ward identities given by WittefR0]. In fact, the case of line bundles

has been already worked out completely by Rditfa16] Further, in this direction, the
relations between theta functions and the Szeg6 kernel are well known (e.g. Theorem 25 of
[7] or Section 6 0f15]) and have been useful in many problems (EL§)).

Moreover, an infinitesimal version of such a formula has been givEi8irwhen proving
that non-Abelian theta functions verify the multicomponent KP hierarchy. Hence, an addi-
tion formula may help in the understanding of this result and of its geometric consequences
(se€[12] for the rank 1 case).

On the other hand, the study of how Jacobian theta functions vary under morphisms of
curves has shed light on their properties (e.g. chapters IV and[¥]pfThis question is
related to the so-called twist structureshet systemg16] and is also addressed in p. 844
of [1] for higher rank.

The above problems are treated in this paper as follows. A generalization of the addition
formula for non-Abelian theta functions is the main resulsettion 3Theorem 3.8which
coincides with Corollary 2.19 ¢#] in the case of line bundles. This formula will be derived
as an identity among global sections of certain isomorphic line bundles. It is worth mention-
ing some results needed for its prodfheorems 3.3 and 3.6vhich allow us to determine
the pullback of the generalized theta divisor by different morphisms which are essentially
given by the action of the Jacobian on the moduli space of semistable vector bundles. The
latter theorem has been already applied by Scfi@kin the study of correlation functions
of generalized— systems.

The known relations between theta functions and the Szegd kernel associated to a line
bundle are generalized Bection 4 The identity given irfTheorem 4.Zould be a first step
in the question addressed by Ball and Vinnikov in p. 86%1dfabout the existence of a
explicit formula for the Szegd kernel in higher rank. Another methods were used by Fay
[5] to give a similar relation for degree 0 stable vector bundles.

Theorem 5.1of the following section contains a global version of Lemma 2.718.

Recall that the bilinear identity for the multicomponent KP hierarchy is a consequence of
this kind of formulae and that, in particular, the non-Abelian theta functiorriguaction
of that hierarchy.

Section 6studies the behavior of non-Abelian theta functions under direct and inverse
image by a cyclic coverindgliheorem 6.&ndProposition 6.). Since our methods are valid
for all » > 1, some of our results specialize to formulae of the Jacobian easd ) given
by Fay (sedRemark 6.3.

2. Preliminaries

This section fixes notations and summarizes some results concerned with the generalized
theta divisor and non-Abelian theta functions (E&8,10,14].

Let C be an irreducible smooth projective curve of gegug 2 overC. Given two
integersy, d, letUc (r, d) (or simplyU(r, d)) denote the moduli space of semistable vector
bundles orC of rankr and degred. Let$ be pg.c.d.(r, d) andr ber2/s.
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Recall that there is a closed subschem&@fr(g — 1)) of codimension 1 given by
O, :={M € Ur, r(g — 1)) : h°(C, M) > 0}.

It thus defines a polarization which is called the generalized theta dj@kdvloreover, it
holds that (Theorem 2 ¢2])

WOUGr, r(g — 1)), 0(0,)) = 1.

We have therefore a global secti@ndefined up to a constant, 6X ©®,) whose zero divisor
is ®,. This section is known as the non-Abelian theta function of reeakd degree(g — 1).
From Drezet and Narashimh@B] and Le Potief14] we learn that in order to define a
polarization on the moduli spaé&r, d) for an arbitraryd, we need to fix a vector bundle
F of degree—(d/8) + (r/8)(g — 1) and rankr/8 such that there exists a vector bundle
E € U(r, d) with h°(C, E ® F) = 0. In particular, one obtains thatM ® F) = 0 for all
M € U, d).
From now on, we will fix a theta characteristit(n) on C and we writeF as F(n) for a
degree—d/s rankr/§ vector bundleF. Then, it is known that

O1r,) == {M e U(r,d) : h°(C, M ® F(n)) > 0}

defines a polarization, that depends only on the clag&#®fin the Grothendieck group of
coherent algebraic sheaves@nThis divisor is known as the generalized theta divisor on
U(r, d) defined byF(n).
Assume that a polarizatioBr,) in U(r, d) is given. Recall that there existssuch that
hi(C, EQ F()) =0 (i = 0, 1). Then, by Lemma 2.5 ¢14], it follows thatF is semistable.
Being F semistable, we can define the following morphism:

Br, 1 U, d) — U, (g — 1)), M- MQ F(n) (2.1)

since the tensor product of semistable vector bundles is semistable (see Theorem 3.1.4 of
[9]). It holds thatﬂ;ﬂl(@;) = O[F,]. Then, define the non-Abelian theta functigjz,) as

the image ob; by the induced morphism
HOUGF, 7(g — 1)), 0(O5) — HOU(r, d), O(Or)). (2.2)

However, the construction of these divisors as determinantal subvaf&t€$turns out
to be an essential tool when proving statements about them.

Let S be a scheme an¥ be a semistable vector bundle 6nx S of rankr and degree
d and letg,, be the morphism

oM S — U d), s> M|cxis)-
Then, the polarization satisfies the following property:
#y(O(OF,)) ~ Det(R*q.(M ® p*(F())))*,

whereg : C x § — Sandp : C x § — C are the natural projections.
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In order to compute this determinant we proceed as follows. Fix an effective diisor
on C x S such thatRlg,.(M(D) ® p*F(n)) = 0. Then, tensor withM ® p*F(n) is the
following exact sequence afi x S:

0— O — O - Op(D)—0
and consider the induced cohomology sequencg:on
0 = ¢+(M ® p*F()) — q(M(D) ® p*F(n))~>q+(M ® Op(D) ® p*F(1)))
— R'q.(M ® p*F(p) — 0.
The properties of determinar[&| show that (up to a constant)
¢y (0F,) = deta) € HOS, duOO[F,)), (2.3)

which is an effective way to deal with non-Abelian theta functions.
Finally, it is worth pointing out that the above construction also applies to the universal
bundle ofu{(r, d) whenr, d are coprime.

3. Addition formula

The first part of this section is devoted to the explicit computation of the pullback of the
generalized theta divis@(r,) by the natural morphism

m U, d) x J — U, d), M, Ly MQL, (3.1

whereJ denotes the Jacobian variety 6f that is, isomorphism classes of degree 0 line
bundles.

This calculation requires a number of intermediate results. Let us introduce the following
notation. Let/; denote the variety of isomorphism classes of degréee bundles orC.
The choice of the theta characteristiqyives rise to a principal polarization ah ©;.
Denote bype, : J — Pic®(J) the isomorphism induced by .

Consider the morphism

det:U(r,r(g — 1) = Jrg-1),

which maps a vector bundle to its determinant. Finally, for a line buidle J let T_
denote the translation defined byon the moduli space of vector bundles as well as on the
Jacobian variety.

Lemma3.1l. LetL € J. Thenthere is an isomorphism

T (Ou(©y)) ® Ou(—6,) = det (TZ,, (o, (L))).

Proof. Let SU(r, O(rn)) be the moduli space of semistable vector bundles of ramkh
determinant isomorphic t6@(rn) and let®, be the restriction 0B, to SU(r, O(rn)).
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Since Pi€U(r, r(g — 1))) =~ Pic(SU(r, O(rn))) @ Pic(Jyg—1)) and Pi€SU(r, O@rn))) =~
7.0, [3], one has thal* (Oy(6,)) ® Oy(—O,) = det (N) for someN € Pic®(Jy;—1))
depending ori.

Consider the morphism

m . SU(r, O(rnp)) x J — U, r(g — 1)), M, Ly MQL.
By Beauville et al.[2], we know thatm*(Oy(©,)) ~ pj‘gu(Ogu((:),)) ® pi(0,;(rO))),

wherepgs;,; andp; are the natural projections.
Taking the pullback of *(Oy(©,)) ® Oy(—©,) by the mapn, one checks thdt;;](N) ~

9o, (L) ® n with u anr-torsion point of Pi€(J) depending orl.. SinceJ is complete and
ther-torsion subgroup of Pf¢J) is finite, one obtains that does not depend ah. Letting
L = O¢, one has thatt = O, and the claim follows. O

Now, we consider the morphis(8.1)for the casel = r(g — 1). Recall that the Poincaré
bundle onJ x J is given by

P:=m5(0;(0)) Q pi(O;(—60)) ® p5(0;(—0y)),

wherem; : J x J — J corresponds to the tensor product of line bundles gnid the
projection onto théth factor.

Lemma3.2. It holds that
m*(Ou(©,)) = p;(Ou(©,)  pi(O;(rO ) ® (T—, o deh x 1)*P.

Proof. We consider the bundle d@#(r, (g — 1)) x J defined by
F = m*Ou(0,) ® pj(Ou(—6,)) & (T—py o det x D*P .
Then, the above lemma implies that

Fluerrg-1)x(Ly = T (Ou(0y)) ® Ou(—6,) @ det (T2, (¢o, (L))" = O,

whereL is a point ofJ.

Hence Fis trivial along the fibers of the natural projectipn : U(r, r(g— 1)) x J — J.
Seesaw theorem allows us to conclude that p’ N for someN e Pic(J).

If we show thatV >~ O;(r®;), we are done. Recall from Raynalid] that there exists
a vector bundlé € U(r, r(g — 1)) with AM := det(M) = O(rn) such that the subscheme
D(M) :={L € J: h°®%M ® L) > 0} is a divisor ofJ which is linearly equivalent te® .
We now have that

N = Flanxs = O1(DM) @ P Y ameo—m)xs = O10rO)). O
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We are now ready to compute the pullback of the generalized theta divisor by the mor-
phism(3.1).

Theorem 3.3. One has that

m*(Ou(O1F,)) = py(Ou(OrF,)) ® pj(0,(FO))) ® ((deto fr) x 1P,

wheregr : U(r, d) — U(r, 0) corresponds to tensor product by F

Proof. It follows from the above lemma and the following commutative diagram: O

U(r,d) x J - U(r,d)
ﬂpn)(ll 1!35‘,,
U(F, (g — 1)) x J == U(F,7(g — 1))

Corollary 3.4. LetM € U(r, d) and By : J — U(r, d) be the morphism which sends L to
M ® L. It holds that

Bu(Ou(Orr,)) = 0;(F0)) ® po,(NM ® F)).

Proof. It follows from the previous theorem and from the isomorphigin(Ou(Or,))) =~
m*(Oy(OrF, 1)) l(myxJ- O

The rest of this section aims at giving explicit formulas for the pullback of non-Abelian
theta functions by the morphism

m
apm : sz - u(rv d)v (.X]_, }’1» <o Xm, ym) = M (Z(xi - )’z)> )

i=1

whereC?" is the product of & copies of the curv€ andM € U(r, d).
Firstly, we will deal with an isomorphism of line bundles6fi" and then it will be applied
to obtain an identity among global sections of them. Such a formula can be understood as
an addition formula for non-Abelian theta functions. For the rank 1 case and identifying the
theta function (as a section) with its classical analytic expression, our formula turns out to
coincide with Fay’s formula. However, as long as no analytic expressions for non-Abelian
theta functions are known, our generalization must be regarded as an identity of sections.
If a point of C?" is denoted by(x1, y1, ..., Xm, ym) € C?", we will call an index odd
(resp. even) if it corresponds to a varialpl€resp.y ;). Finally, let p; be the projection onto
theith factor andAj; the divisor ofC2" where theth and thejth entries coincide.

Lemma3.5. LetL € J and consider the following morphism

a1 C¥ = ) (XL YL s Xy ym) > L (Z(xi - yi)> :

1
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Then one has that

F0;0) =0 Aji — Aj *L* *L ,
o 0,(0) DT oAj— ) 4y ®(ig3dp, (n))@(igvoenp, (n))

i+j=odd i+ j=even

where the sums involve onlyj withi < j.
Proof. See Theorem 11.1 jii15]. O

Theorem 3.6. Let M be a rational point of((r, d) and letay, be the morphism defined by
ay : C*" — Ur, d), (X1, YLo - s X,y Ym) > M (Z(xl- - Yi)> :
i=1
Then there is an isomorphism of line bundles 64"
oF
‘XK/IOU(@[Fn]) ~0 Z Ajj — Z Ajj & ('ggc)Idp;k ANM F(—Vl))*>

i+ j=odd i+ j=even
® ( ® piAn(M® F(n))) ;
1even
where the sums involves ornlyj withi < .
Proof. The morphismy,, factors as follows:
2% 1 ~ (my x J2uc, @).
Let M’ be M ® F. RecallingCorollary 3.4andLemma 3.5wve have that

@ OuBLry) = 0p(0sF0) @ o, (M) = ap (T, 01(01) ® 01O
~ o) (0(0)) ® a*OC((QJ(@J))@)r—l

~0 Z Ajj — Z Ajj ®<i§)jdp;k(/\M/)*(n)>

i+ j=odd i+ j=even
®F—1
® < ® p;*(AM/)(n)> RO > Aj— > 4
1 even P P
i+ j=o0dd i+j=even
® < ® p?‘©(n)®"1) ® ( ® p?‘©(n)®"1>
iodd ieven
and the theorem follows. O

Remark 3.7. Thisresult has been applied[itB] when proving the relation of determinants
of correlation functions of generalizégc systems and determinants of non-Abelian theta
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functions. This is a first step of the expected fact that correlation functions of generalized
b—c system are determined completely by the geometry of the non-Abelian theta divisor,
analogous to the rank 1 case.

Recall from chapter Il of4] that the line bundl€(A) conC x C has a unique section
E(x, y), which is known as the prime form and that it can be constructed in termsTof
be consistent with Fay, it will be assumed that the theta characteristdd. In particular,
it holds thatE(x, y) = —E(y, x).

Theorem 3.8. Let M be a rational point ot4(r, d) such thattr, (M) # 0. Then for
(X1, Y1, - - +» Xm, Ym) € C?", one has that

O, (M (371 (xi — ) . ]
O, (M) 1_[ E(xi, xj)" E(yi, yj)

i<j

; OF, (M(xi — ;)
= || E(x;, y) det| —X——+—""—].
l_j[ o 1) e(eﬂ,(M)E(xi,y,-)f)

Proof. Observe that the r.h.s. of the equality of the statement equals the sum

. =171 OF, (M(x; — Yo(i)))
> signo) [ ECay) [[— :
0ESm i j i OF, (M)

o]
By Theorem 3.&ith m = 1,0F, (M(x; — y;))/0F,(M) is a section of the line bundle

O @ pi A (M ® F(—n))* ® pi A (M ® F(np)).

So, it turns out that each term of the above sum is a global section of
®F
0 Z Ajj ®(®p§‘/\(M®F(—n))*>®<®p§kA(M®F(n)))-
iodd ieven
The I.h.s. is a section of the line bundle:
r
0{7{,,(9(@[1:,7]) RO Z Ajj

i+ j=even

These two line bundles are isomorphic Dyeorem 3.6Hence, both sides of the equality
are to be understood as global sections of the same line bundle.Sifds proper, there

is no non-constant global section of the trivial bundle. So, if we show that both sections
have the same zero divisor, then they coincide up to a multiplicative constant, which will
be eventually shown to be 1.
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Let DR (resp.D.) denote the zero divisor of the r.h.s. (resp. |.h.s.). Sincand DR are
linearly equivalent, there exists a rational functifon C2” such that

Dr — DL = D(f).

Let us consider the following diagram:

C?m _f_>ﬂ;n1
|
Cl2m—1
Whereﬂ(xl, ylv <o Xm, ym) = (-xlv X2, y27 <o Xm, yﬂ'l)'

Suppose we have proved that there exists C2"~1 such thatDy |,-1(;) = DRlz-1;)
and suppDy |,-1(;) # 771(z). It thus follows thatf|,-1., is a non-zero constant, since
7 1(z) ~ C is proper. From theigidity lemmaone deduces that is constant along the
fibers ofr and, thereforef has neither poles nor zeroe<iA”. Summing upy is invertible
or, what amounts to the samB, = Dr. So, there exists a non-zero constarsich that
the L.h.s. equals the r.h.s. multiplied byLettingx; = y; for all i, we obtain thak = 1.

By the above discussion, it remains to show that there existsch thatDL|ﬂ_1(Z) =

DRI ;-1(;) and suppDL|,-1(.) # 7 1(2).
We takez = (x1, X2, ¥2, - - -, Xm» Ym) € C?" "1 such thate, = yy for k # 1 andx; # x;
for all i # j. Then, we have that

9F,, (M (Z?:l(xi - yi))) 1_[ E(x; xj);E(yi yj);

OF, (M) i<j i
GF (M()C]_ - M)) 7 7 7
== an [TEOL ) [ E@xp” ] EGivp
B kAL i<j 2<i<j
and the r.h.s. restricted to the fiberab
SO0F, (M(x; — y;)) 20F, (M(x1— y1))
det HE(xk, yj) W = l_[ E(xg, y1) UOT
ki Fy ol kAL Fy

Letting y1 = x1 one checks that both restrictions are not zero. Furthermore, since the first
one is equal to the second times a non-zero constant (), one has thaDy |1, =
DR|-1(;- The theorem is proved. O

4, Addition formula and the Szegd kernel

Now, let us recall briefly the definition and properties of the Szegd kernel associated to a
vector bundleV € U(r, d) — Or,). For such a bundle define the Szego kerfigl(x, y), to
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be the meromorphic section pf (M ® F(—n))* ® p5(M ® F(n)) onC x C with a simple
pole along the diagonal such that its residue along it is 1.
Note thatSy, (x, y) might be written as an x r matrix, because there is an isomorphism:

PIM ® F(—=n)* ® p3(M ® F(n)) = Hom(p1(M ® F(—n)), p5(M ® F(1))).

On the other hand, observe that the restriction to the diaganal C x C induces an
isomorphism

HO(C x C, pi(M ® F(—n))* ® p3(M ® F(n)) ® O(A)) ~ HO(C, EndM ® F))

and denote bysi'cl(x, y) the holomorphic global section of the vector bungig(M ®

F(—n)* ® p5(M ® F(n)) ® O(A) whose image by the above isomorphism is the identity.
Then, it is worth noting thaE(x, y) - Sy (x, y) is a holomorphic section gp; (M ®

F(=n)* ® p5(M ® F(n)) ® O(A), because the morphis@ — O(A) maps the global

section 1 to the global sectidtyx, y). One checks tha‘IQl(x, y) — E(x,y) - Sp(x, y) gives

a global section op7 (M ® F(—n))* ® p5(M ® F(n)). Since this bundle has no non-zero

section, then one has that

SR,I(X, y) == E(X, )’) : SM(X, )’)

If SR} andS,, are both understood as matrices, then this identity makes sense too.

Remark 4.1. One can show that the rows 6fxg, y) - Sy (xo, y) for a fixed pointxg € C
give a basis oH#°(C, M ® F(n + x0)), because the restriction o} x C mapsS,ﬁ} to its
rows

HO(C x €, Hom(p}(M ® F(—n)), p5(M ® F(1)) ® O(A)))
— HY%(C, M ® Fin + x;))®".

Now, the relation of the non-Abelian theta function and the Szeg6 kernel given by Fay
for degree 0 stable bundIgs is generalized for semistable ones by the following theorem.

Theorem 4.2. Let M be a rational point ot4(r, d) such thattr, (M) # 0. Then for
(X1, Y1, - - +» Xm, Ym) € C?", one has that

GF,, (M (Z,r'n:l(xi — i

) o ;
oD )) l—[ E(x;, x))" E(yi, yj) = 1—[ E(x;, y;)" detSy(x, y),

i<j iJ

whereSy (x, y) is anrm x rm matrix builded up from thé x 7 boxesSy (x;, y;).
Before giving the proof we need some results.

Lemma 4.3. Both sides of the equality in the statementlé&orem 4.2re global sections
of the isomorphic line bundles ag?™.
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Proof. Note that the matriX§,, (x, y) is a meromorphic section of the bundle:
Hom < © piM®F(-n), & pi(M® F(n)))
i=odd j=even

with polesalong_,, ;_,4q 4jj (0dd indexes correspond.tts variables, while even indexes
correspond toy's variables). Therefore, the determinant §igi(x, y) is a meromorphic
section of

<, ® pinM® F(—n))*) ® < ® piAnM® F(n))) :
=odd n

i= j=eve

Counting the order of these poles, one concludes that the r.h.s. is a holomorphic section of

®F
<, ® piAnM® F(—n))*) ® < ® piAnMe F(n))) ®0 Z Ajj
i=odd j=even -
i+ j=odd
The I.h.s. is a holomorphic global section of
®F
FOEDR®O[ Y 4y
i+ j=even

and the two line bundles above are isomorphidlbgorem 3.6 O

Lemma4.4. LetM € U(r, d) — OF,]. Then for (x, y) € C x C, one has that

OF, (M(x — y))

67, (D) = E(x,y) detSy(x, y).
Proof. Lemma 4.3mplies that both sides are global sections of the same line bundle.
Label the three copies @f in C x C x C by 0, 1 and 2. LetAq; be the subscheme where
the Oth entry coincides with thiéh entry. Letp denote the projection from x C x C onto
the copy ofC labeled with 0. Finally, let : C x C x C — C x C be the projection onto
the copies labeled with 1 and 2.
The bundleM defines the morphism

ay  C x C— Urd), (x, y) = M(x — ).
By the construction of the polarization it is known that
oy (O(=0O[F,))) = Det(R* g M),

whereM = p*(M ® F(n)) ® O(Ap1 — Ag2). Let M’ be M ® F(n).
Let us compute this determinant as well as a section of its dual. Consider the exact
sequence o x C x C:

0 — O(Ap1 — Ag2) = O(Ag1) — O(Ao1)|ag, — 0.
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Tensor withp* M’ and pushing it forward by one obtains

0— ¢M — qu(p"M' ® 0(A01))—ﬂ>q*((p*M’ ® O(Ao1))| agy) — R'g:M — 0,

becauseRlq, (p*M’ ® O(Apy)) = 0.
Observe that the two middle terms of the above sequence are locally free of same rank.
Then, it follows that there exists a canonical isomorphism:

iy (OO1F)) = Mg (p™M' @ O(A01))* ® Ag«((p*M' ® O(Ao1))| agy)

which, by relation(2.3), maps the global sectiar}, 6, to detg.

Our task now consists of relating the determinantgofvith that of S,'b(x, y), since
detsh (x,y) = E(x,y) detSy(x, y). The fact that it will be shown that the morphism
S;} (x, y) factorizes ag o ¢ 1, whereg is a morphism whose determinant equats(M).

Let us begin with the morphism. Analogous arguments as previously applied to the
exact sequence:

0— O — O(4p1) = O(40D|ag, — O

show that there is an isomorphism

0 (P* M’ ® O(A0D) 24, (0* M’ @ O(A0D) | 40y)-

If ag : C x C — U(r, d) is the morphism that sends, y) to M, then it follows that the
isomorphism:

agO0O[F,]) = Ag«(p*M' ® O(A0))* ® Ag«((p*M' ® O(Ao1))|agy) = O

mapsag(9F,) = 0F, (M) to detp.
In order to write down the factorization Sﬁ'l (x, ) we need the following identifications:

g+(p*M' ® O(Ao1)|ag, = 15(p*M' ® O(Ap1) = p3M’ ® O(A),
gx(p*M' ® O(A01) | ag, = 11(P*M' ® O(Ao1) =~ pi(M' @ w(),

wheret; (j = 1, 2) is the embedding’ x C >~ Ag; C C x C x C and p; the projection
from C x C onto its jth factor (j = 1, 2), and§2¢ is the canonical line bundle an.
These identifications shows that there is a natural map of bundl€soq’;

PiIM' ® og) = q:((p"M' ® O(Ao1)|a01)

ot ¥
~ 4 (p*M' ® O(AoD) 5. (p"M' ® O(201))| a0y)
~ p;M/ QR O(A).
If we check that this map coincides wi.ﬂﬁl(x, y) = E(x, y)Su(x, y), the lemmalis proved.

To this goal it is enough to verify that the restrictiongf ¢~ to the diagonal is the identity
map and this fact follows from a straightforward calculation. O
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Proof of Theorem 4.2. Firstly, observe thatemma 4.3implies that both sides of the
equality are holomorphic global sections of the same line bundle.

Similar arguments to those of the proofdieorem 3.&llows us to reduce the proof to
check that the statement holds true on the fibet(z) ~ C, wherer : ¢2" — ¢?"-1js
the projection that forgetg; andz is a point(x1, x2, y2, . .., Xm, ym) € C?"~1 such that
x; # x;foralli # jandy; = x;.

Now, note that the claim restricted to the fibrel(z) is precisely the statementibémma
4.4, which has been already proved. O

Corollary 4.5. Under the same hypothesis of the previous thepcera has that

OF, (M(x; — yj))
detf ———— """ | = detS ,¥).
€ <9F,,(M)E(xi,yj)’> SLu (. )

Proof. It follows from Theorems 3.8 and 4.2 O

5. Relation with the multicomponent KP hierarchy

Inthis section, it willaddressed the relation between some properties of non-Abelian theta
functions with those of-functions of the multicomponent KP hierarchy. The importance of
the theorem below comes from the consequences of its infinitesimal version (Lemma 2.7 of
[13]), which eventually leads to the bilinear identity in the framework of the multicomponent
KP hierarchy. Moreover, it generalizes Proposition 2.1gtbfor higher rank.

Theorem 5.1. Let M be a rational point of/(r, r(g — 1+ m)) (m being a positive integgr

such that:(C, M) = 0.
Then the following identity orC™ holds

o, (M (— Zyi)) l_[ E(y;, y)" = rdet(s;(y))),
i=1

i<j
wherex € C*, {s; = (s}, ...,s)]i = 1,..., mr} is a basis of%(C, M) and the matrix
(si(y;)) is
ST o S{0D o Stom) o SiOm)
s S SeOm) e Sh(m)

Proof. We begin with then = 2 case where the idea of the proof will be clear. For this
case we will work with bundles 06 x C x C and will use again the notations introduced
in the proof ofLemma 4.4



E. Gomez Goralez, F.J. Plaza Marti/ Journal of Geometry and Physics 48 (2003) 480-502 493

Recall that the sheaD s,,+4,, is the kernel of the difference mafay, & Osy, —
O aginag, and, therefore, we have the exact sequence

0— Ongta0r = Ong ® Ong, = Oaginag, — 0.
From the following exact sequence:
0— O(=A401— 402) = O = Opg+49, = O,
one deduces the exactness of
0 = u(p*M(—Ao1 — A02) = ¢u(p*M)> = qu(p*M ® Oyt ag))
— R'qu(p*M(=Ao1— Az) — O,
which, by relation(2.3), implies that
Or(M(—y1 — y2)) = defl@) Vy1,y2 € C.

The statement is thus reduced to computéadeh an alternative way.
Consider the following commutative diagram:

qn‘(p*M) = (M ® 0A01+A02)

|| I

HO(M) ® Ocxoc — (M ® (Oan ® Onag))

whereg is the morphism induced b 4y,+ 40, = Oag ® O4y, and ev is the evaluation
map, that is, at the poiriy1, y2) is

HOM) — My, ® My,, s> (s(y1), 5(y2)).
The diagram shows that

def(p) detla) = det(ev)
and therefore

detly) - 6,(M(—y1 — y2)) = A'det(s; (y))),

wherel’ is a constant that depends on the choice of the basis and on the above isomorphisms
of line bundles and it will eventually give the constant of the statement.

Sinceq : Apg1+ Agz2 — C isfinite of degree Zqu*(OA01+A02) = 0. It thus follows the
exactness of:

0— q*(OA01+402)@)q*(OA01 ® Oagy) = 4x(Oagnag) — 0.

Now, we will show that dety) = det(pg)” and that ddtpg) = E(y1, y2).
Letus begin computing detp). From the theory of determinari® one has the following
isomorphism:

Det(CI* (OA01+A02) - q*(OA()]_ S OAoz)) = Det(CI* (OAoj_ﬁAoz))-
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Since the above bundles live 6hx C let us rewrite them as follows. From the diagram:

AppNApe—=CxCxC

l §

A CxC

(A C C x C being the diagonal) one obtains
Det(qx(Oapinag,)) = Det(O4) =~ Det(O(—4) — O) = O(-4),

where the second isomorphism follows from the exactness of the following sequence on
C x C:

00— O0(-4)— O0O— 04— 0.
These calculations imply that:
detigo) = E(y1. y2) € HY(C x C, O(4)).

On the other hand, degt) may be computed similarly and we obtain

Det(g«(p*M ® O agy+Aq,)
— q*(p*M ® (OA01 &) OAOZ))) ~ DettM ® Op) >~ O(—rA).

Now, it follows that dety) = det(pg)” = E(y1, y2)". Them = 2 case is proved.
For arbitrarym we proceed similarly but replacing the morphigrby

4 (P"M @ Ogm pq) = 4x(pP"M ® (Ogm 4 ® Oag,)) = -+

o (p*M ® <'%1OA°i>> ’
i=

which has determinarﬁ[,.<j E(yi, yj). O

6. Cyclic coverings

Lety : C — C be a cyclic covering of degree between two irreducible smooth
projective curves given by an automorphisrof C such that” = Id, that is,C/ (o) =

In this section we will study the relationship between the polarizations of moduli spaces
of vector bundles o’ andC. This question is related to the twist structureg-af systems
[16] and has been addressedih The rank 1 case is to be found[ui.

Letus introduce some notation. L&{(resp.A) denote the diagonal 6fx C (resp Cx C)
Let D., be the inverse image of the diagonal by the morphism ¢/ : C x C — C x C.
Let E (resp.E) be the prime form ot (resp.C). Finally, letRY = Y zee(nz — DX be the
ramification divisor ofy, wheren; is the ramification index .

Let us begin with some computations for the ideal sheaf of the diagonal.
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Lemma6.1. Lety; bey x y andR* be(R” x C) U (C x RY).
Then there is an exact sequence 6nx C:

0— y70(4) - O ZDOJ - Op1 —> 0
J

and a canonical isomorphism of line bundles
YiO(A) = O [ Y~ Doj | ® piO(—R") ® p30(=R?),
J

wherep; : C x C — C are the natural projections

Proof. Since there is an inclusio)q‘l(A) - Zj Doj, it follows the exact sequence:

0— y;0(A) > O Y Doj | > Or > 0. (6.1)
J
Let us compute)r. If § = supRY) is the support ofRY and U the open subscheme

(C — 8) x (C — ), one checks easily that *(4)|y = Y Dojly and T is therefore
contained in

CxC-U= ] {x}xCuCx {x).
XERY
By symmetry, it is enough to show that the lengthToft {¥} x C (¥ € S) is ny — 1.
Recalling the exact sequen@®1), one observes that this can be done by comparing the
zero divisors ofy; E and]_[j(ld x o/)*E as global sections aP (Z; Doj). One checks
now that if (%, ) € S x C, then(%, ¥) is a simple zero of; E and a zero of order; of
[1;0d x o)*E.
For the second claim, it suffices to take determinants in the exact sequence of the first
claim. O

Lemma 6.2. Let M be a vector bundle of of rank7.
Then there is an exact sequence

~ n—1 ~ -
0= 7" () > & @M = (O2nr)®” — 0
and a canonical isomorphism

* V nol 1Ty 1. Y
AV ) = 8 A ()M @O —SFRY ).
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Finally, if A has degree!, then
degysM =d —7(g — 1—n(g — 1)),

whereg (resp.g) is the genus of (resp.C).

Proof. The adjunction formula gives a morphisei(y.M) — M and, since/*(y. M) is
invariant undew, there is also a morphism te*)*M for 0 < k < n; that is

* vy n-1 k7
V() — '@ ()" B,

Since this is a morphism between two locally free sheaves of the same rank which is an
isomorphism at the stalk of any poitiie C — RY, it follows that there is an exact sequence:

~ -1 -
0— y*(yul) > "@O(a">*M — Or - 0, 6.2)
k=

where suppl) C SuppR?. y )
Note that the computation df is a local problem, so it can be assumédo beOGCB’.

Furthermore, observe thé&; = OGTB,;, where

n—1
0— ¥ (1:0p) — kEBOC’)é — O — 0. (6.3)

For the caseWl = O some results on cyclic coverings are known. From Theorem 3.2
of [6] we learn that the covering : C — C is defined by a line bundl& on C and a
divisor D = Y a,q; on C, where 1< a; < n, L®" >~ O¢(D), andg; is a branch point of
y. Furthermore, all the points on the fibre ofjahave the same multiplicity, say;, and
si ‘= n/m; = g.c.d(g;, n) is the number of distinct points ijﬂ_l(q[).

Moreover, if [a],, denotes the remainder afdivided byn and Dy is ) ;[ka].q;, it then
holds that the coefficients gf1(Dy) are multiple ofn (Section 2 of6]) and that

* ~n-l 1
Y (xOp)— @ Oz | ==y~ (Dy) | -
k=0 n

Now, one checks that the morphisi®.3) is given by the divisors—(1/n)y~1(Dy), in
particular, supgl”) < |, suppy~1(Dx) = SuppR”.

It only remains to compute the length Bf at a ramification point. Lep;, € y~1(¢;) be
given.

The length of the cokernel of the sequeliée3) at p; is given by

= mi mis; e il mi(m; — 1) n(m; —1)
] 91 / i i i—

E :[kai]n7 = E [kailn = si E (K]0 = si > = TR

k=1 k=1 k=1

Thus,T’ = (1/2)nR and the conclusion follows. Observe that the coefficientsRsfare
even. O
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Fix a line bundleL,, on C satisfying
L, = O0z(30R) —mR) if n=2m+1,
Ly suchthatL$? ~ Ox(RY) if n=2m.
Then, the following two conditions hold:
L2 ~ Ox(RY), LY~ Op(3(nR))

andL, has degre¢g — 1) —n(g — 1).

We also fix theta characteristigson C and# on C, wherej is defined byOs (1) =
Y Oc(n) ® Ly.

Letd :=7(z — 1 —n(g — 1)). Since pg.c.d.(7, d) = 7, the line bundleF = L} may be
used to define a polarizaticﬁa[pﬁ] in Uz (7, d).

Note that the theta characteristi@lso defines a polarizatiaf,; on the moduli space
Uc(r, 0).

Assume, we are given a vector bundiee Uz (r, d) whose direct image is a semistable
vector bundle oi€’. Then,Lemma 6.2mplies thaty, M € U(r, 0), wherer := n - 7. Further,
we have the morphisms:

&M . 62nm_) Z/{é‘(;a gl)s (i:l.’ 5}11 .. ,inmv 5’nm) = M <Zil - Sll)

1

and
o, C?" = Uc(r, 0), (XL, VLo - -5 Xms Ym) = ¥aM ® Oc (in - )’i) .
i

In order to study the relation of the corresponding non-Abelian theta functions, we con-
sider the following diagram:

(IT(C x &)y = E2nm 2 1/ (7, d)

A

a -~
Y M

(C x Oy = com Ue(r,0)

wherey,, denotes the map?” — C?" given byy on each component, ang, is the
embedding induced by the morphism

pr:CxCo[€CxO. @9 G3.o®. 0().....0" @).0" 1))

Let us denote by; (resp.p;) the projection oiC?" (resp.C?") onto itsith factor.
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The following theorem gives the relation between the pullbacks of the polarizations by
the above diagram.

Theorem 6.3. There is an isomorphism of line bundles 6#":

®R3r
(@, i © Ym) OO = p}, (@) *OO[r)) ® (iglﬁ;‘m;) :
whereF = L;ﬁ andr = rn.

Proof. The statement follows from the comparison of the pullba(d<y§M o Ym)* OO

and(aj; o ,Om)*O(é[F;]]), which will be done with the help ofheorem 3.@andLemmas
6.1 and 6.2

To begin with, we compute the pullback by of (oey*M)*O((H)[n]). Note thatl)(—7) is
invariant byo. Therefore, byemma 6.2and the properties df,,, one has that

Vi (_® Pi A (M @ O(—n))*)
iodd
~ @ Pr A (M @ O(—m)*) = @ Pf A (VM ® y*O(—n))*
iodd iodd

~ @ pr(AY M ® L, (—)®")*
iodd

N n—1 o~ 1 5 *
~ M(( A(af)*M)Qw(__er)@Ly<_n>®r) .
i odd j=0 2

Recalling that(L;j)@” ~ O(—(1/2)rrR?) and thatL;‘,(—ﬁ) is invariant undep, the above
expression is isomorphic to

- n—1 S~ 5 *
® p; (( ® A (af)*M) QL (-N® ® L§r>
iodd j=0

—1 . - *
~ @ p; ((’f@o INCONEZE: L’;(—ﬁ))) ® L%”)
]:
~ oy, ( ® i A (M@ L’;(—m)*) ® ( ® ia:‘(L’;)@’) ,
iodd iodd

wherep; are the natural projections 62",
Similarly, the pullback of

® pi A (M @ O()

ieven

by y, is

oF ( ® piAM® Li(ﬁ))) ® ( ® iv?‘(L’;)@r) .
reven 1even
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Note thatr Y, Do = > Dj andpy*(Aj) = Dj. Then, fromLemma 6.1 it follows
an isomorphism o’ x C

n
yiOmA) ~ 10 | Y Aj | ® pO(-nR) ® p5O(—nRY)
iJ
n
~ 10 | D] Ay | ® Pi(LE®2 @ pi(LE)®?.
iJ

Finally, a lengthy but straightforward calculation shows that

®r ®r
WOl 2 A= X0 4| =0l X Ai- ) A
i<j i<j i<j i<j
i+ j=0dd i+ j=even i+ j=odd i+ j=even

® (@ i;;*(L;)@’Zr) :
iall

Comparing these results with the expressiorp;pt&*MO((:)[pﬁ])) given by Theorem 3.6
the statement follows. O

Observe thal, = O wheny is non-ramified. Then, in this situation, a consequence of
the above theorem is the following identity between global sections of the line bundles in
the previous statement.

Theorem 6.4. Let y be non-ramified and/ € U(F, d) — O3 such thaty, M € U(r, 0).
Then for (31, J1, . . ., %m, ym) € C2", it holds that
Oy (M ® O(Z)) _ 03(M & y*O(2))
O (s ) 0 (M)

where Z is the divisop_" ; ((x;) — ¥(3:)) on C.

Proof. First of all, observe that
0;(M ® y*O(2)) = 0@ 5 (pm (X1, 1, - -+ X, Im))),

becausey~1(y(%))) = p1(x;). Then, the r.h.s. of the formula is a holomorphic global
section Ofp;kn(&;q()(@[;]])). On the other hand, the l.h.s. is a holomorphic global section
of y¥ (of; ,(4(9(@[17]))- Hence, byTheorem 6.3both sides are global sections of isomorphic
line bundles orC2".

Similar arguments to those of the proof Bfieorem 3.8educe the proof to check that
the statement holds true when restricted to a fibré(z), wherer : C?" — C?"~1js
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the projection that forget$; andz is a point(x1, ¥2, 32, ..., Xm, ¥m) € C?"~1 such that
x; # x; foralli # jandy; = x;. For the sake of notation, we defing¢o bey(x1).

Let us denote byp andg the projections ofC x C onto its first and second factors,
respectively. Consider the bundle

M= p*(M(y~(x) + 7)) ® O(=D)

onC x C, whereD := Y ; Do;. Using the sequence defined by the effective divispwe
obtain the following exact sequence:

0— M— p*My ) +7) — pP*My~tx) +7) @ Op — 0. (6.4)

SinceRq, (p*(M(y~1(x) + 7))) = 0, the restriction of the r.h.s. to—1(z) is given by the
determinant of the morphism

(P My + 1) = G(P* My~ + ) @ Op)

induced by the latter sequence.

We now compute the restriction of the I.h.s. in a similar way. Let us denojedndg
the projections of x C onto its first and second factors, respectively. M¢be the bundle
PE(reM @ O(x + 1)) ® O(—=I) onC x C, wherer is the graph of the map. The exact
sequence associated to the divigbimplies the exactness of the sequence

0> M — p* (M ® O(x + 1)) = p*(¥«M @ O(x + 1)) ® O — 0. (6.5)

Being R1q.(p* (v« M ® O(x +1n))) = 0, it follows that the restriction of the L.h.s. t07(z)
is the determinant of the induced morphism:

4+ (P* (M ® O(x +m))) = qu(p* (M @ O(x + 1) ® Orr).

Bearing in mind the commutativity of the diagram:

~ ~ yxId
x C

CxC

N,

it will suffice to conclude to show that the direct imagejby Id of the sequencés.4)is
the sequencés.5).
The direct image of the sequen@4)by y x Id is

0 — (y x 1d)(P* My 1) + 7)) ® O(=D)) — (y x 1d)(p* (M (y~1(x) + 7))
— (y x 1d)(P*(M(y~1(x) + 7)) ® Op) — 0,

because the map x Id is finite.
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Recalling thaty x I1d)=1(I") = D, y~1() = 7 and using the projection formula and the
base change theorem for the case:

CxC—

»171

we conclude that the latter sequence coincides with the seq(@age
Then, we know that both sections are equal up to a constafi#®riT his constant might
be evaluated on—1(z) by letting 1 = %1, and it follows that it is equal to 1. O

Remark 6.5. Observe that the above theorem may be generalized for the ramified case.
This would require to know sections m?” = O((1/2)nR). Besides|.emma 6.lallows

us to give a section of it in terms of the prime fordsind E becausgl/2)nR’ is effective.

We finish with a similar study for the inverse image. Mte U (r, 0) be a vector bundle
on C. From Lemma 3.2.2 of9] it turns out thaty*M € U (r, 0). Consider the following
diagram:

oom Srm Ux(r,0)
Ym

o M Ue(r,0)

Theorem 6.6. It holds that

Qr
(@M oy 0@ Y0 D Aj— Y. 4
i+ j=odd i+ j=even
®r
2(&y*M)*C’)(é[77])®(’) Z Ajj — Z Ajj ®<}§II(1~7?L;)®F>-

i+ j=odd i+j=even

Proof. The claim follows from Theorem 3.6and from the fact thaty*Oc(n) =~
Oc() ® LY. O

Proposition 6.7. Suppose that is non-ramified and le¥ € U (r, 0) such thab, (M) # 0.
Then for (31, 31, . . ., %m, ym) € C2", it holds that

éﬁ (V*M(Z?:l(ii — ?i))) g T P NN NN
= (E(xi, 0" (X)) E(yi, 0" (¥))))
05 (y*M) EIE ! /

0y (M (X7 (V&) — v(31))) )
= E Al
6,000 ]_j[}!"[1 (%1, 0*(5)))
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Proof. One proceed similarly as iiheorem 6.4 O

Remark 6.8. Itis worth pointing out that Proposition 5.1 B#f] follows from Theorem 6.6
wheny is ramified, degy = 2 andr = 1.
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