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Abstract

This paper generalizes for non-Abelian theta functions a number of formulae valid for theta
functions of Jacobian varieties. The addition formula, the relation with the Szëgo kernel and with
the multicomponent KP hierarchy and the behavior under cyclic coverings are given.
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1. Introduction

Fay’s addition formula for theta functions of Jacobians[4] has turned out to be highly
relevant in a number of problems: geometric properties of Jacobians (existence of trisecants
to their Kummer varieties), infinitesimal behavior of theta functions of Jacobians (KP and
KdV equations) and algebraic formulations of certain aspects of conformal field theories.
On the other hand, deep relations between moduli spaces of vector bundles and Jacobians
varieties[2,11] has been already established. Therefore, it is thus natural to expect simi-
larities between the properties of classical theta functions and those of non-Abelian theta
functions, in particular, an analogue of Fay’s addition formula.

In fact, the existence of generalized addition formulae for non-Abelian theta functions
has been conjectured by Schork (conjecture IV.9 of[18]) when generalizing for higher rank
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Raina’s approach tob–c systems[16]. Therefore, this kind of formulae should be useful
tools when studying Schork’s correlation functions as well as non-Abelian generalizations
of multiplicative Ward identities given by Witten[20]. In fact, the case of line bundles
has been already worked out completely by Raina[15,16]. Further, in this direction, the
relations between theta functions and the Szegö kernel are well known (e.g. Theorem 25 of
[7] or Section 6 of[15]) and have been useful in many problems (e.g.[16]).

Moreover, an infinitesimal version of such a formula has been given in[13] when proving
that non-Abelian theta functions verify the multicomponent KP hierarchy. Hence, an addi-
tion formula may help in the understanding of this result and of its geometric consequences
(see[12] for the rank 1 case).

On the other hand, the study of how Jacobian theta functions vary under morphisms of
curves has shed light on their properties (e.g. chapters IV and V of[4]). This question is
related to the so-called twist structures ofb–c systems[16] and is also addressed in p. 844
of [1] for higher rank.

The above problems are treated in this paper as follows. A generalization of the addition
formula for non-Abelian theta functions is the main result ofSection 3(Theorem 3.8) which
coincides with Corollary 2.19 of[4] in the case of line bundles. This formula will be derived
as an identity among global sections of certain isomorphic line bundles. It is worth mention-
ing some results needed for its proof,Theorems 3.3 and 3.6, which allow us to determine
the pullback of the generalized theta divisor by different morphisms which are essentially
given by the action of the Jacobian on the moduli space of semistable vector bundles. The
latter theorem has been already applied by Schork[19] in the study of correlation functions
of generalizedb–c systems.

The known relations between theta functions and the Szegö kernel associated to a line
bundle are generalized inSection 4. The identity given inTheorem 4.2could be a first step
in the question addressed by Ball and Vinnikov in p. 865 of[1] about the existence of a
explicit formula for the Szegö kernel in higher rank. Another methods were used by Fay
[5] to give a similar relation for degree 0 stable vector bundles.

Theorem 5.1of the following section contains a global version of Lemma 2.7 of[13].
Recall that the bilinear identity for the multicomponent KP hierarchy is a consequence of
this kind of formulae and that, in particular, the non-Abelian theta function is aτ-function
of that hierarchy.

Section 6studies the behavior of non-Abelian theta functions under direct and inverse
image by a cyclic covering (Theorem 6.3andProposition 6.7). Since our methods are valid
for all r ≥ 1, some of our results specialize to formulae of the Jacobian case (r = 1) given
by Fay (seeRemark 6.8).

2. Preliminaries

This section fixes notations and summarizes some results concerned with the generalized
theta divisor and non-Abelian theta functions (see[2,3,10,14]).

Let C be an irreducible smooth projective curve of genusg ≥ 2 overC. Given two
integers,r, d, letUC(r, d) (or simplyU(r, d)) denote the moduli space of semistable vector
bundles onC of rankr and degreed. Let δ be p.g.c.d.(r, d) andr̄ ber2/δ.
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Recall that there is a closed subscheme ofU(r, r(g− 1)) of codimension 1 given by

Θr := {M ∈ U(r, r(g− 1)) : h0(C,M) > 0}.
It thus defines a polarization which is called the generalized theta divisor[3]. Moreover, it
holds that (Theorem 2 of[2])

h0(U(r, r(g− 1)),O(Θr)) = 1.

We have therefore a global sectionθr, defined up to a constant, ofO(Θr)whose zero divisor
isΘr. This section is known as the non-Abelian theta function of rankr and degreer(g−1).

From Drezet and Narashimhan[3] and Le Potier[14] we learn that in order to define a
polarization on the moduli spaceU(r, d) for an arbitraryd, we need to fix a vector bundle
F̄ of degree−(d/δ) + (r/δ)(g − 1) and rankr/δ such that there exists a vector bundle
E ∈ U(r, d) with h0(C,E ⊗ F̄ ) = 0. In particular, one obtains thatχ(M ⊗ F̄ ) = 0 for all
M ∈ U(r, d).

From now on, we will fix a theta characteristicO(η) onC and we writeF̄ asF(η) for a
degree−d/δ rankr/δ vector bundleF . Then, it is known that

Θ[Fη] := {M ∈ U(r, d) : h0(C,M ⊗ F(η)) > 0}
defines a polarization, that depends only on the class ofF(η) in the Grothendieck group of
coherent algebraic sheaves onC. This divisor is known as the generalized theta divisor on
U(r, d) defined byF(η).

Assume that a polarizationΘ[Fη] in U(r, d) is given. Recall that there existsE such that
hi(C,E⊗F(η)) = 0 (i = 0,1). Then, by Lemma 2.5 of[14], it follows thatF is semistable.

BeingF semistable, we can define the following morphism:

βFη : U(r, d)→ U(r̄, r̄(g− 1)), M �→ M ⊗ F(η) (2.1)

since the tensor product of semistable vector bundles is semistable (see Theorem 3.1.4 of
[9]). It holds thatβ−1

Fη
(Θr̄) = Θ[Fη] . Then, define the non-Abelian theta functionθ[Fη] as

the image ofθr̄ by the induced morphism

H0(U(r̄, r̄(g− 1)),O(Θr̄))→ H0(U(r, d),O(Θ[Fη])). (2.2)

However, the construction of these divisors as determinantal subvarieties[3,10] turns out
to be an essential tool when proving statements about them.

Let S be a scheme andM be a semistable vector bundle onC × S of rankr and degree
d and letφM be the morphism

φM : S → U(r, d), s �→ M|C×{s}.
Then, the polarization satisfies the following property:

φ∗M(O(Θ[Fη])) � Det(R•q∗(M ⊗ p∗(F(η))))∗,
whereq : C × S → S andp : C × S → C are the natural projections.
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In order to compute this determinant we proceed as follows. Fix an effective divisorD

on C × S such thatR1q∗(M(D) ⊗ p∗F(η)) = 0. Then, tensor withM ⊗ p∗F(η) is the
following exact sequence onC × S:

0→ O→ O(D)→ OD(D)→ 0

and consider the induced cohomology sequence onS:

0 → q∗(M ⊗ p∗F(η))→ q∗(M(D)⊗ p∗F(η)) α→q∗(M ⊗OD(D)⊗ p∗F(η))
→ R1q∗(M ⊗ p∗F(η))→ 0.

The properties of determinants[8] show that (up to a constant)

φ∗M(θFη) = det(α) ∈ H0(S, φ∗MO(Θ[Fη])), (2.3)

which is an effective way to deal with non-Abelian theta functions.
Finally, it is worth pointing out that the above construction also applies to the universal

bundle ofU(r, d) whenr, d are coprime.

3. Addition formula

The first part of this section is devoted to the explicit computation of the pullback of the
generalized theta divisorΘ[Fη] by the natural morphism

m : U(r, d)× J → U(r, d), (M,L) �→ M ⊗ L, (3.1)

whereJ denotes the Jacobian variety ofC, that is, isomorphism classes of degree 0 line
bundles.

This calculation requires a number of intermediate results. Let us introduce the following
notation. LetJd denote the variety of isomorphism classes of degreed line bundles onC.
The choice of the theta characteristicη gives rise to a principal polarization onJ , ΘJ .
Denote byφΘJ : J → Pic0(J) the isomorphism induced byΘJ .

Consider the morphism

det :U(r, r(g− 1))→ Jr(g−1),

which maps a vector bundle to its determinant. Finally, for a line bundleL ∈ J let TL
denote the translation defined byL on the moduli space of vector bundles as well as on the
Jacobian variety.

Lemma 3.1. LetL ∈ J . Then, there is an isomorphism:

T ∗L (OU(Θr))⊗OU(−Θr) � det∗(T ∗−rη(φΘJ (L))).

Proof. Let SU(r,O(rη)) be the moduli space of semistable vector bundles of rankr with
determinant isomorphic toO(rη) and letΘ̄r be the restriction ofΘr to SU(r,O(rη)).
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Since Pic(U(r, r(g− 1))) � Pic(SU(r,O(rη)))⊕ Pic(Jr(g−1)) and Pic(SU(r,O(rη))) �
ZΘ̄r [3], one has thatT ∗L (OU(Θr)) ⊗ OU(−Θr) � det∗(N) for someN ∈ Pic0(Jr(g−1))

depending onL.
Consider the morphism

m̄ : SU(r,O(rη))× J → U(r, r(g− 1)), (M,L) �→ M ⊗ L.

By Beauville et al.[2], we know thatm̄∗(OU(Θr)) � p∗SU(OSU(Θ̄r)) ⊗ p∗J (OJ (rΘJ)),
wherepSU andpJ are the natural projections.

Taking the pullback ofT ∗L (OU(Θr))⊗OU(−Θr) by the mapm̄, one checks thatT ∗rη(N) �
φΘJ (L)⊗µ with µ anr-torsion point of Pic0(J) depending onL. SinceJ is complete and
ther-torsion subgroup of Pic0(J) is finite, one obtains thatµ does not depend onL. Letting
L = OC, one has thatµ = OJ and the claim follows. �

Now, we consider the morphism(3.1)for the cased = r(g−1). Recall that the Poincaré
bundle onJ × J is given by

P := m∗J (OJ (ΘJ))⊗ p∗1(OJ (−ΘJ))⊗ p∗2(OJ (−ΘJ)),

wheremJ : J × J → J corresponds to the tensor product of line bundles andpi is the
projection onto theith factor.

Lemma 3.2. It holds that

m∗(OU(Θr)) = p∗U(OU(Θr))⊗ p∗J (OJ (rΘJ))⊗ ((T−rη ◦ det)× 1)∗P.

Proof. We consider the bundle onU(r, r(g− 1))× J defined by

F := m∗OU(Θr)⊗ p∗U(OU(−Θr))⊗ ((T−rη ◦ det)× 1)∗P−1.

Then, the above lemma implies that

F|U(r,r(g−1))×{L} = T ∗L (OU(Θr))⊗OU(−Θr)⊗ det∗(T ∗−rη(φΘJ (L)))
∗ � OU,

whereL is a point ofJ .
Hence,F is trivial along the fibers of the natural projectionpJ : U(r, r(g−1))×J → J .

Seesaw theorem allows us to conclude thatF � p∗JN for someN ∈ Pic(J).
If we show thatN � OJ (rΘJ), we are done. Recall from Raynaud[17] that there exists

a vector bundleM ∈ U(r, r(g− 1)) with ∧M := det(M) = O(rη) such that the subscheme
D(M) := {L ∈ J : h0(M ⊗ L) > 0} is a divisor ofJ which is linearly equivalent torΘJ .
We now have that

N � F|{M}×J = OJ (D(M))⊗ P−1|{(∧M)⊗O(−rη)}×J � OJ (rΘJ). �
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We are now ready to compute the pullback of the generalized theta divisor by the mor-
phism(3.1).

Theorem 3.3. One has that

m∗(OU(Θ[Fη])) = p∗U(OU(Θ[Fη]))⊗ p∗J (OJ (r̄ΘJ))⊗ ((det◦ βF )× 1)∗P,

whereβF : U(r, d)→ U(r̄,0) corresponds to tensor product by F.

Proof. It follows from the above lemma and the following commutative diagram: �

Corollary 3.4. LetM ∈ U(r, d) andβM : J → U(r, d) be the morphism which sends L to
M ⊗ L. It holds that

β∗M(OU(Θ[Fη])) � OJ (r̄ΘJ)⊗ φΘJ (∧(M ⊗ F)).

Proof. It follows from the previous theorem and from the isomorphismβ∗M(OU(Θ[Fη])) �
m∗(OU(Θ[Fη]))|{M}×J . �

The rest of this section aims at giving explicit formulas for the pullback of non-Abelian
theta functions by the morphism

αM : C2m→ U(r, d), (x1, y1, . . . , xm, ym) �→ M

(
m∑
i=1

(xi − yi)
)
,

whereC2m is the product of 2m copies of the curveC andM ∈ U(r, d).
Firstly, we will deal with an isomorphism of line bundles onC2m and then it will be applied

to obtain an identity among global sections of them. Such a formula can be understood as
an addition formula for non-Abelian theta functions. For the rank 1 case and identifying the
theta function (as a section) with its classical analytic expression, our formula turns out to
coincide with Fay’s formula. However, as long as no analytic expressions for non-Abelian
theta functions are known, our generalization must be regarded as an identity of sections.

If a point ofC2m is denoted by(x1, y1, . . . , xm, ym) ∈ C2m, we will call an index odd
(resp. even) if it corresponds to a variablexi (resp.yj). Finally, letpi be the projection onto
theith factor and∆ij the divisor ofC2m where theith and thejth entries coincide.

Lemma 3.5. LetL ∈ J and consider the following morphism:

αL : C2m→ J, (x1, y1, . . . , xm, ym) �→ L

(∑
i

(xi − yi)
)
.
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Then, one has that

α∗LOJ (ΘJ) � O

 ∑
i+j=odd

∆ij −
∑

i+j=even

∆ij


⊗ ( ⊗

iodd
p∗i L

∗(η)
)
⊗
(
⊗
ieven

p∗i L(η)
)
,

where the sums involve onlyi, j with i < j.

Proof. See Theorem 11.1 in[15]. �

Theorem 3.6. Let M be a rational point ofU(r, d) and letαM be the morphism defined by

αM : C2m→ U(r, d), (x1, y1, . . . , xm, ym) �→ M

(
m∑
i=1

(xi − yi)
)
.

Then, there is an isomorphism of line bundles onC2m:

α∗MOU(Θ[Fη]) � O

 ∑
i+j=odd

∆ij −
∑

i+j=even

∆ij



⊗r̄

⊗
(
⊗
iodd
p∗i ∧ (M ⊗ F(−η))∗

)

⊗
(
⊗
ieven

p∗i ∧ (M ⊗ F(η))
)
,

where the sums involves onlyi, j with i < j.

Proof. The morphismαM factors as follows:

C2mαO→J � {M} × JβM→U(r, d).
LetM ′ beM ⊗ F . RecallingCorollary 3.4andLemma 3.5we have that

α∗MOU(Θ[Fη]) � α∗O(OJ (r̄ΘJ)⊗ φΘJ (∧M ′)) � α∗O(T ∗∧M′OJ (ΘJ)⊗OJ (ΘJ)⊗r̄−1)

� α∗∧M′(OJ (ΘJ))⊗ α∗OC(OJ (ΘJ))⊗r̄−1

� O

 ∑
i+j=odd

∆ij −
∑

i+j=even

∆ij


⊗ ( ⊗

iodd
p∗i (∧M ′)∗(η)

)

⊗
(
⊗
ieven

p∗i (∧M ′)(η)
)
⊗O


 ∑
i+j=odd

∆ij −
∑

i+j=even

∆ij



⊗r̄−1

⊗
(
⊗
iodd
p∗iO(η)

⊗r̄−1
)
⊗
(
⊗
ieven

p∗iO(η)
⊗r̄−1

)

and the theorem follows. �

Remark 3.7. This result has been applied in[19] when proving the relation of determinants
of correlation functions of generalizedb–c systems and determinants of non-Abelian theta
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functions. This is a first step of the expected fact that correlation functions of generalized
b–c system are determined completely by the geometry of the non-Abelian theta divisor,
analogous to the rank 1 case.

Recall from chapter II of[4] that the line bundleO(∆) conC × C has a unique section
E(x, y), which is known as the prime form and that it can be constructed in terms ofη. To
be consistent with Fay, it will be assumed that the theta characteristicη is odd. In particular,
it holds thatE(x, y) = −E(y, x).

Theorem 3.8. Let M be a rational point ofU(r, d) such thatθFη(M) �= 0. Then, for
(x1, y1, . . . , xm, ym) ∈ C2m, one has that

θFη
(
M
(∑m

i=1(xi − yi)
))

θFη(M)

∏
i<j

E(xi, xj)
r̄E(yi, yj)

r̄

=
∏
i,j

E(xi, yj)
r̄ det

(
θFη(M(xi − yj))
θFη(M)E(xi, yj)

r̄

)
.

Proof. Observe that the r.h.s. of the equality of the statement equals the sum

∑
σ∈Sm

sign(σ)
∏
i,j

σ(i) �=j

E(xi, yj)
r̄
∏
i

θFη(M(xi − yσ(i)))
θFη(M)

.

By Theorem 3.6with m = 1, θFη(M(xi − yj))/θFη(M) is a section of the line bundle

O(∆)⊗r̄ ⊗ p∗i ∧ (M ⊗ F(−η))∗ ⊗ p∗j ∧ (M ⊗ F(η)).
So, it turns out that each term of the above sum is a global section of

O


 ∑
i+j=odd

∆ij



⊗r̄

⊗
(
⊗
iodd
p∗i ∧ (M ⊗ F(−η))∗

)
⊗
(
⊗
ieven

p∗i ∧ (M ⊗ F(η))
)
.

The l.h.s. is a section of the line bundle:

α∗MO(Θ[Fη])⊗O

 ∑
i+j=even

∆ij



⊗r̄

.

These two line bundles are isomorphic byTheorem 3.6. Hence, both sides of the equality
are to be understood as global sections of the same line bundle. SinceC2m is proper, there
is no non-constant global section of the trivial bundle. So, if we show that both sections
have the same zero divisor, then they coincide up to a multiplicative constant, which will
be eventually shown to be 1.
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LetDR (resp.DL) denote the zero divisor of the r.h.s. (resp. l.h.s.). SinceDL andDR are
linearly equivalent, there exists a rational functionf onC2m such that

DR −DL = D(f).
Let us consider the following diagram:

whereπ(x1, y1, . . . , xm, ym) := (x1, x2, y2, . . . , xm, ym).
Suppose we have proved that there existsz ∈ C2m−1 such thatDL |π−1(z) = DR|π−1(z)

and supp(DL |π−1(z)) �= π−1(z). It thus follows thatf |π−1(z) is a non-zero constant, since
π−1(z) � C is proper. From therigidity lemmaone deduces thatf is constant along the
fibers ofπ and, therefore,f has neither poles nor zeroes inC2m. Summing up,f is invertible
or, what amounts to the same,DL = DR. So, there exists a non-zero constantλ such that
the l.h.s. equals the r.h.s. multiplied byλ. Lettingxi = yi for all i, we obtain thatλ = 1.

By the above discussion, it remains to show that there existsz such thatDL |π−1(z) =
DR|π−1(z) and supp(DL |π−1(z)) �= π−1(z).

We takez = (x1, x2, y2, . . . , xm, ym) ∈ C2m−1 such thatxk = yk for k �= 1 andxi �= xj
for all i �= j. Then, we have that

θFη (M (∑m
i=1(xi − yi)

))
θFη(M)

∏
i<j

E(xi, xj)
r̄E(yi, yj)

r̄



∣∣∣∣∣∣
π−1(z)

= θFη(M(x1− y1))

θFη(M)

∏
k �=1

E(y1, yk)
r̄
∏
i<j

E(xi, xj)
r̄
∏

2≤i<j
E(yi, yj)

r̄

and the r.h.s. restricted to the fiber ofz is

det


∏
k �=i
E(xk, yj)

r̄
θFη(M(xi − yj))

θFη(M)



∣∣∣∣∣∣
π−1(z)

=
∏
k �=1

E(xk, y1)
r̄
θFη(M(x1− y1))

θFη(M)
.

Letting y1 = x1 one checks that both restrictions are not zero. Furthermore, since the first
one is equal to the second times a non-zero constant onπ−1(z), one has thatDL |π−1(z) =
DR|π−1(z). The theorem is proved. �

4. Addition formula and the Szegö kernel

Now, let us recall briefly the definition and properties of the Szegö kernel associated to a
vector bundleM ∈ U(r, d)−Θ[Fη] . For such a bundle define the Szegö kernel,SM(x, y), to
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be the meromorphic section ofp∗1(M ⊗F(−η))∗ ⊗p∗2(M ⊗F(η)) onC×C with a simple
pole along the diagonal such that its residue along it is 1.

Note thatSM(x, y)might be written as anr× rmatrix, because there is an isomorphism:

p∗1(M ⊗ F(−η))∗ ⊗ p∗2(M ⊗ F(η)) � Hom(p∗1(M ⊗ F(−η)), p∗2(M ⊗ F(η))).
On the other hand, observe that the restriction to the diagonal∆ ⊂ C × C induces an
isomorphism

H0(C × C,p∗1(M ⊗ F(−η))∗ ⊗ p∗2(M ⊗ F(η))⊗O(∆)) � H0(C,End(M ⊗ F))
and denote bySh

M(x, y) the holomorphic global section of the vector bundlep∗1(M ⊗
F(−η))∗ ⊗p∗2(M ⊗F(η))⊗O(∆) whose image by the above isomorphism is the identity.

Then, it is worth noting thatE(x, y) · SM(x, y) is a holomorphic section ofp∗1(M ⊗
F(−η))∗ ⊗ p∗2(M ⊗ F(η)) ⊗ O(∆), because the morphismO → O(∆) maps the global
section 1 to the global sectionE(x, y). One checks thatSh

M(x, y)−E(x, y) ·SM(x, y) gives
a global section ofp∗1(M ⊗ F(−η))∗ ⊗ p∗2(M ⊗ F(η)). Since this bundle has no non-zero
section, then one has that

Sh
M(x, y) = E(x, y) · SM(x, y).

If Sh
M andSM are both understood as matrices, then this identity makes sense too.

Remark 4.1. One can show that the rows ofE(x0, y) · SM(x0, y) for a fixed pointx0 ∈ C
give a basis ofH0(C,M ⊗ F(η+ x0)), because the restriction to{xj} × C mapsSh

M to its
rows

H0(C × C,Hom(p∗1(M ⊗ F(−η)), p∗2(M ⊗ F(η))⊗O(∆)))
→ H0(C,M ⊗ F(η+ xj))⊕r.

Now, the relation of the non-Abelian theta function and the Szegö kernel given by Fay
for degree 0 stable bundles[5] is generalized for semistable ones by the following theorem.

Theorem 4.2. Let M be a rational point ofU(r, d) such thatθFη(M) �= 0. Then, for
(x1, y1, . . . , xm, ym) ∈ C2m, one has that

θFη
(
M
(∑m

i=1(xi − yi)
))

θFη(M)

∏
i<j

E(xi, xj)
r̄E(yi, yj)

r̄ =
∏
i,j

E(xi, yj)
r̄ detSM(x, y),

whereSM(x, y) is an r̄m× r̄m matrix builded up from thēr × r̄ boxesSM(xi, yj).

Before giving the proof we need some results.

Lemma 4.3. Both sides of the equality in the statement ofTheorem 4.2are global sections
of the isomorphic line bundles onC2m.
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Proof. Note that the matrixSM(x, y) is a meromorphic section of the bundle:

Hom

(
⊕
i=odd

p∗i (M ⊗ F(−η)), ⊕
j=even

p∗j (M ⊗ F(η))
)

with poles along
∑
i+j=odd∆ij (odd indexes correspond tox’s variables, while even indexes

correspond toy’s variables). Therefore, the determinant detSM(x, y) is a meromorphic
section of(

⊗
i=odd

p∗i ∧ (M ⊗ F(−η))∗
)
⊗
(
⊗

j=even
p∗j ∧ (M ⊗ F(η))

)
.

Counting the order of these poles, one concludes that the r.h.s. is a holomorphic section of

(
⊗
i=odd

p∗i ∧ (M ⊗ F(−η))∗
)
⊗
(
⊗

j=even
p∗j ∧ (M ⊗ F(η))

)
⊗O


 ∑
i+j=odd

∆ij



⊗r̄

.

The l.h.s. is a holomorphic global section of

α∗(Θ[Fη])⊗O

 ∑
i+j=even

∆ij



⊗r̄

and the two line bundles above are isomorphic byTheorem 3.6. �

Lemma 4.4. LetM ∈ U(r, d)−Θ[Fη] . Then, for (x, y) ∈ C × C, one has that

θFη(M(x− y))
θFη(M)

= E(x, y)r̄ detSM(x, y).

Proof. Lemma 4.3implies that both sides are global sections of the same line bundle.
Label the three copies ofC in C×C×C by 0, 1 and 2. Let∆0i be the subscheme where

the 0th entry coincides with theith entry. Letp denote the projection fromC×C×C onto
the copy ofC labeled with 0. Finally, letq : C × C × C→ C × C be the projection onto
the copies labeled with 1 and 2.

The bundleM defines the morphism

αM : C × C→ U(r, d), (x, y) �→ M(x− y).
By the construction of the polarization it is known that

α∗M(O(−Θ[Fη])) � Det(R•q∗M),

whereM := p∗(M ⊗ F(η))⊗O(∆01−∆02). LetM ′ beM ⊗ F(η).
Let us compute this determinant as well as a section of its dual. Consider the exact

sequence onC × C × C:

0→ O(∆01−∆02)→ O(∆01)→ O(∆01)|∆02 → 0.
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Tensor withp∗M ′ and pushing it forward byq one obtains

0→ q∗M→ q∗(p∗M ′ ⊗O(∆01))
β→q∗((p∗M ′ ⊗O(∆01))|∆02)→ R1q∗M→ 0,

becauseR1q∗(p∗M ′ ⊗O(∆01)) = 0.
Observe that the two middle terms of the above sequence are locally free of same rank.

Then, it follows that there exists a canonical isomorphism:

α∗M(O(Θ[Fη])) � ∧(q∗(p∗M ′ ⊗O(∆01)))
∗ ⊗ ∧q∗((p∗M ′ ⊗O(∆01))|∆02),

which, by relation(2.3), maps the global sectionα∗MθFη to detβ.
Our task now consists of relating the determinant ofβ with that of Sh

M(x, y), since
detSh

M(x, y) = E(x, y)r̄detSM(x, y). The fact that it will be shown that the morphism
Sh
M(x, y) factorizes asβ ◦ φ−1, whereφ is a morphism whose determinant equalsθFη(M).
Let us begin with the morphismφ. Analogous arguments as previously applied to the

exact sequence:

0→ O→ O(∆01)→ O(∆01)|∆01 → 0

show that there is an isomorphism

q∗(p∗M ′ ⊗O(∆01))
φ�q∗((p∗M ′ ⊗O(∆01))|∆01).

If α0 : C × C → U(r, d) is the morphism that sends(x, y) toM, then it follows that the
isomorphism:

α∗0O(Θ[Fη]) � ∧(q∗(p∗M ′ ⊗O(∆01)))
∗ ⊗ ∧q∗((p∗M ′ ⊗O(∆01))|∆01) � O

mapsα∗0(θFη) = θFη(M) to detφ.
In order to write down the factorization ofSh

M(x, y)we need the following identifications:

q∗(p∗M ′ ⊗O(∆01))|∆02 � ι∗2(p∗M ′ ⊗O(∆01)) � p∗2M ′ ⊗O(∆),
q∗(p∗M ′ ⊗O(∆01))|∆01 � ι∗1(p∗M ′ ⊗O(∆01)) � p∗1(M ′ ⊗ ω∗C),

whereιj (j = 1,2) is the embeddingC × C � ∆0j ⊂ C × C × C andpj the projection
fromC × C onto itsjth factor (j = 1,2), andΩC is the canonical line bundle onC.

These identifications shows that there is a natural map of bundles onC × C:

p∗1(M
′ ⊗ ω∗C) � q∗((p∗M ′ ⊗O(∆01))|∆01)

φ−1

� q∗(p∗M ′ ⊗O(∆01))
β→q∗((p∗M ′ ⊗O(∆01))|∆02)

� p∗2M ′ ⊗O(∆).
If we check that this map coincides withSh

M(x, y) = E(x, y)SM(x, y), the lemma is proved.
To this goal it is enough to verify that the restriction ofβ◦φ−1 to the diagonal is the identity
map and this fact follows from a straightforward calculation. �
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Proof of Theorem 4.2. Firstly, observe thatLemma 4.3implies that both sides of the
equality are holomorphic global sections of the same line bundle.

Similar arguments to those of the proof ofTheorem 3.8allows us to reduce the proof to
check that the statement holds true on the fiberπ−1(z) � C, whereπ : C2m → C2m−1 is
the projection that forgetsy1 andz is a point(x1, x2, y2, . . . , xm, ym) ∈ C2m−1 such that
xi �= xj for all i �= j andyi = xi.

Now, note that the claim restricted to the fibreπ−1(z) is precisely the statement ofLemma
4.4, which has been already proved. �

Corollary 4.5. Under the same hypothesis of the previous theorem, one has that

det

(
θFη(M(xi − yj))
θFη(M)E(xi, yj)

r̄

)
= detSM(x, y).

Proof. It follows from Theorems 3.8 and 4.2. �

5. Relation with the multicomponent KP hierarchy

In this section, it will addressed the relation between some properties of non-Abelian theta
functions with those ofτ-functions of the multicomponent KP hierarchy. The importance of
the theorem below comes from the consequences of its infinitesimal version (Lemma 2.7 of
[13]), which eventually leads to the bilinear identity in the framework of the multicomponent
KP hierarchy. Moreover, it generalizes Proposition 2.16 of[4] for higher rank.

Theorem 5.1. Let M be a rational point ofU(r, r(g− 1+m)) (m being a positive integer)
such thath1(C,M) = 0.

Then, the following identity onCm holds:

θr

(
M

(
−

m∑
i=1

yi

))∏
i<j

E(yi, yj)
r = λdet(si(yj)),

whereλ ∈ C
∗, {si = (s1i , . . . , sri )|i = 1, . . . ,mr} is a basis ofH0(C,M) and the matrix

(si(yj)) is



s11(y1) · · · sr1(y1) · · · s11(ym) · · · sr1(ym)

...
...

s1mr(y1) · · · srmr(y1) · · · s1mr(ym) · · · srmr(ym)


 .

Proof. We begin with them = 2 case where the idea of the proof will be clear. For this
case we will work with bundles onC × C × C and will use again the notations introduced
in the proof ofLemma 4.4.
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Recall that the sheafO∆01+∆02 is the kernel of the difference mapO∆01 ⊕ O∆02 →
O∆01∩∆02 and, therefore, we have the exact sequence

0→ O∆01+∆02 → O∆01 ⊕O∆02 → O∆01∩∆02 → 0.

From the following exact sequence:

0→ O(−∆01−∆02)→ O→ O∆01+∆02 → 0,

one deduces the exactness of

0 → q∗(p∗M(−∆01−∆02))→ q∗(p∗M)
α→→ q∗(p∗M ⊗O∆01+∆02)

→ R1q∗(p∗M(−∆01−∆02))→ 0,

which, by relation(2.3), implies that

θr(M(−y1− y2)) = det(α) ∀y1, y2 ∈ C.
The statement is thus reduced to compute det(α) in an alternative way.

Consider the following commutative diagram:

whereϕ is the morphism induced byO∆01+∆02 → O∆01 ⊕ O∆02 and ev is the evaluation
map, that is, at the point(y1, y2) is

H0(M)→ My1 ⊕My2, s �→ (s(y1), s(y2)).

The diagram shows that

det(ϕ)det(α) = det(ev)

and therefore

det(ϕ) · θr(M(−y1− y2)) = λ′det(si(yj)),

whereλ′ is a constant that depends on the choice of the basis and on the above isomorphisms
of line bundles and it will eventually give the constant of the statement.

Sinceq : ∆01+∆02→ C is finite of degree 2,R1q∗(O∆01+∆02) = 0. It thus follows the
exactness of:

0→ q∗(O∆01+∆02)
ϕ0→q∗(O∆01 ⊕O∆02)→ q∗(O∆01∩∆02)→ 0.

Now, we will show that det(ϕ) = det(ϕ0)
r and that det(ϕ0) = E(y1, y2).

Let us begin computing det(ϕ0). From the theory of determinants[8] one has the following
isomorphism:

Det(q∗(O∆01+∆02)→ q∗(O∆01 ⊕O∆02)) � Det(q∗(O∆01∩∆02)).
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Since the above bundles live onC × C let us rewrite them as follows. From the diagram:

(∆ ⊂ C × C being the diagonal) one obtains

Det(q∗(O∆01∩∆02)) � Det(O∆) � Det(O(−∆)→ O) = O(−∆),
where the second isomorphism follows from the exactness of the following sequence on
C × C:

0→ O(−∆)→ O→ O∆→ 0.

These calculations imply that:

det(ϕ0) = E(y1, y2) ∈ H0(C × C,O(∆)).
On the other hand, det(ϕ) may be computed similarly and we obtain

Det(q∗(p∗M ⊗O∆01+∆02)

→ q∗(p∗M ⊗ (O∆01 ⊕O∆02))) � Det(M ⊗O∆) � O(−r∆).
Now, it follows that det(ϕ) = det(ϕ0)

r = E(y1, y2)
r. Them = 2 case is proved.

For arbitrarym we proceed similarly but replacing the morphismϕ by

q∗(p∗M ⊗O∑m
i=1∆0i

) → q∗(p∗M ⊗ (O∑m−1
i=1 ∆0i

⊕O∆0m))→ · · ·

→ q∗
(
p∗M ⊗

(
m⊕
i=1
O∆0i

))
,

which has determinant
∏
i<j E(yi, yj)

r. �

6. Cyclic coverings

Let γ : C̃ → C be a cyclic covering of degreen between two irreducible smooth
projective curves given by an automorphismσ of C̃ such thatσn = Id, that is,C̃/〈σ〉 = C.

In this section we will study the relationship between the polarizations of moduli spaces
of vector bundles oñC andC. This question is related to the twist structures ofb–c systems
[16] and has been addressed in[1]. The rank 1 case is to be found in[4].

Let us introduce some notation. Let∆ (resp.∆̃) denote the diagonal ofC×C (resp.C̃×C̃).
Let D̃ij be the inverse image of the diagonal by the morphismσi × σj : C̃ × C̃→ C̃ × C̃.
LetE (resp.Ẽ) be the prime form ofC (resp.C̃). Finally, letRγ =∑

x̃∈C̃(nx̃ − 1)x̃ be the
ramification divisor ofγ, wherenx̃ is the ramification index at̃x.

Let us begin with some computations for the ideal sheaf of the diagonal.
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Lemma 6.1. Letγ1 beγ × γ andR1 be(Rγ × C̃) ∪ (C̃ × Rγ).
Then, there is an exact sequence onC̃ × C̃:

0→ γ∗1O(∆)→ O

∑

j

D̃0j


→ OR1 → 0

and a canonical isomorphism of line bundles:

γ∗1O(∆) � O

∑

j

D̃0j


⊗ p̃∗1O(−Rγ)⊗ p̃∗2O(−Rγ),

wherep̃i : C̃ × C̃→ C̃ are the natural projections.

Proof. Since there is an inclusionγ−1
1 (∆) ⊆∑j D̃0j, it follows the exact sequence:

0→ γ∗1O(∆)→ O

∑

j

D̃0j


→ OT → 0. (6.1)

Let us computeOT . If S = supp(Rγ) is the support ofRγ andU the open subscheme
(C̃ − S) × (C̃ − S), one checks easily thatγ−1

1 (∆)|U =
∑
j D̃0j|U andT is therefore

contained in

C̃ × C̃ − U =
⋃
x̃∈Rγ

({x̃} × C̃ ∪ C̃ × {x̃}).

By symmetry, it is enough to show that the length ofT at {x̃} × C̃ (x̃ ∈ S) is nx̃ − 1.
Recalling the exact sequence(6.1), one observes that this can be done by comparing the

zero divisors ofγ∗1E and
∏
j(Id × σj)∗Ẽ as global sections ofO

(∑
j D̃0j

)
. One checks

now that if (x̃, ỹ) ∈ S × C̃, then(x̃, ỹ) is a simple zero ofγ∗1E and a zero of ordernx̃ of∏
j(Id × σj)∗Ẽ.
For the second claim, it suffices to take determinants in the exact sequence of the first

claim. �

Lemma 6.2. Let M̃ be a vector bundle oñC of rank r̃.
Then, there is an exact sequence:

0→ γ∗(γ∗M̃)→
n−1⊕
k=0
(σk)∗M̃ → (O(1/2)nRγ )

⊕r̃ → 0

and a canonical isomorphism

∧γ∗(γ∗M̃) �
n−1⊗
k=0

∧ (σk)∗M̃ ⊗O
(
−1

2
r̃nRγ

)
.
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Finally, if M̃ has degreẽd, then

degγ∗M̃ = d̃ − r̃(g̃− 1− n(g− 1)),

whereg̃ (resp.g) is the genus of̃C (resp.C).

Proof. The adjunction formula gives a morphismγ∗(γ∗M̃) → M̃ and, sinceγ∗(γ∗M̃) is
invariant underσ, there is also a morphism to(σk)∗M̃ for 0≤ k < n; that is

γ∗(γ∗M̃)→
n−1⊕
k=0
(σk)∗M̃.

Since this is a morphism between two locally free sheaves of the same rank which is an
isomorphism at the stalk of any pointx̃ ∈ C̃−Rγ , it follows that there is an exact sequence:

0→ γ∗(γ∗M̃)→
n−1⊕
k=0
(σk)∗M̃ → OT → 0, (6.2)

where supp(T) ⊆ suppRγ .
Note that the computation ofT is a local problem, so it can be assumedM̃ to beO⊕r̃C .

Furthermore, observe thatOT = O⊕r̃T ′ , where

0→ γ∗(γ∗OC̃)→
n−1⊕
k=0
O
C̃
→ OT ′ → 0. (6.3)

For the caseM̃ = O
C̃

some results on cyclic coverings are known. From Theorem 3.2
of [6] we learn that the coveringγ : C̃ → C is defined by a line bundleL on C and a
divisorD = ∑

aiqi onC, where 1≤ ai < n, L⊗n � OC(D), andqi is a branch point of
γ. Furthermore, all the points on the fibre of aqi have the same multiplicity, saymi, and
si := n/mi = g.c.d(ai, n) is the number of distinct points inγ−1(qi).

Moreover, if [a]n denotes the remainder ofa divided byn andDk is
∑
i[kai]nqi, it then

holds that the coefficients ofγ−1(Dk) are multiple ofn (Section 2 of[6]) and that

γ∗(γ∗OC̃)
∼→n−1⊕
k=0
O
C̃

(
−1

n
γ−1(Dk)

)
.

Now, one checks that the morphism(6.3) is given by the divisors−(1/n)γ−1(Dk), in
particular, supp(T ′) ⊆⋃k suppγ−1(Dk) = suppRγ .

It only remains to compute the length ofT ′ at a ramification point. Letpi ∈ γ−1(qi) be
given.

The length of the cokernel of the sequence(6.3)atpi is given by

n−1∑
k=1

[kai]n
mi

n
= misi

n

mi−1∑
k=1

[kai]n = si
mi−1∑
k′=1

[k′]n = si mi(mi − 1)

2
= n(mi − 1)

2
.

Thus,T ′ = (1/2)nRγ and the conclusion follows. Observe that the coefficients ofnRγ are
even. �
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Fix a line bundleLγ on C̃ satisfying

Lγ := O
C̃
(1

2(nRγ)−mRγ) if n = 2m+ 1,

Lγ such thatL⊗2
γ � O

C̃
(Rγ) if n = 2m.

Then, the following two conditions hold:

L⊗2
γ � O

C̃
(Rγ), L⊗nγ � O

C̃
(1

2(nRγ))

andLγ has degree(g̃− 1)− n(g− 1).
We also fix theta characteristicsη on C and η̃ on C̃, whereη̃ is defined byO

C̃
(η̃) :=

γ∗OC(η)⊗ Lγ .
Let d̃ := r̃(g̃− 1− n(g− 1)). Since p.g.c.d.(r̃, d̃) = r̃, the line bundleF = L∗γ may be

used to define a polarizatioñΘ[Fη̃] in U
C̃
(r̃, d̃).

Note that the theta characteristicη also defines a polarizationΘ[η] on the moduli space
UC(r,0).

Assume, we are given a vector bundleM̃ ∈ U
C̃
(r̃, d̃) whose direct image is a semistable

vector bundle onC. Then,Lemma 6.2implies thatγ∗M̃ ∈ U(r,0), wherer := n · r̃. Further,
we have the morphisms:

α̃M̃ : C̃2nm→ U
C̃
(r̃, d̃), (x̃1, ỹ1, . . . , x̃nm, ỹnm) �→ M̃

(∑
i

x̃i − ỹi
)

and

αγ∗M̃ : C2m→ UC(r,0), (x1, y1, . . . , xm, ym) �→ γ∗M̃ ⊗OC
(∑

i

xi − yi
)
.

In order to study the relation of the corresponding non-Abelian theta functions, we con-
sider the following diagram:

whereγm denotes the map̃C2m → C2m given byγ on each component, andρm is the
embedding induced by the morphism

ρ1 : C̃ × C̃→
n∏
(C̃ × C̃), (x̃, ỹ) �→ (x̃, ỹ, σ(x̃), σ(ỹ), . . . , σn−1(x̃), σn−1(ỹ)).

Let us denote bypi (resp.p̃i) the projection ofC2m (resp.C̃2m) onto itsith factor.
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The following theorem gives the relation between the pullbacks of the polarizations by
the above diagram.

Theorem 6.3. There is an isomorphism of line bundles onC̃2m:

(αγ∗M̃ ◦ γm)∗O(Θ[η]) � ρ∗m((α̃M̃)∗O(Θ̃[Fη̃]))⊗
(
⊗
iall
p̃∗i L

∗
γ

)⊗3r

,

whereF = L∗γ andr = r̃n.

Proof. The statement follows from the comparison of the pullbacks(αγ∗M̃ ◦ γm)∗O(Θ[η])

and(α̃M̃ ◦ ρm)∗O(Θ̃[Fη̃]), which will be done with the help ofTheorem 3.6andLemmas
6.1 and 6.2.

To begin with, we compute the pullback byγm of (αγ∗M̃)
∗O(Θ[η]). Note thatL∗γ(−η̃) is

invariant byσ. Therefore, byLemma 6.2and the properties ofLγ , one has that

γ∗m

(
⊗
iodd
p∗i ∧ (γ∗M̃ ⊗O(−η))∗

)
� ⊗
iodd
p̃∗i (γ

∗ ∧ (γ∗M̃ ⊗O(−η))∗) � ⊗
iodd
p̃∗i ∧ (γ∗γ∗M̃ ⊗ γ∗O(−η))∗

� ⊗
iodd
p̃∗i (∧γ∗γ∗M̃ ⊗ Lγ(−η̃)⊗r)∗

� ⊗
iodd
p̃∗i

((
n−1⊗
j=0

∧ (σj)∗M̃
)
⊗O

(
−1

2
rRγ

)
⊗ Lγ(−η̃)⊗r

)∗
.

Recalling that(L∗γ)⊗r � O(−(1/2)rRγ) and thatL∗γ(−η̃) is invariant underσ, the above
expression is isomorphic to

⊗
iodd
p̃∗i

((
n−1⊗
j=0

∧ (σj)∗M̃
)
⊗ L∗γ(−η̃)⊗r ⊗ L⊗rγ

)∗

� ⊗
iodd
p̃∗i

((
n−1⊗
j=0

∧ (σj)∗(M̃ ⊗ L∗γ(−η̃))
)
⊗ L⊗rγ

)∗

� ρ∗m
(
⊗
iodd
p̄∗i ∧ (M̃ ⊗ L∗γ(−η̃))∗

)
⊗
(
⊗
iodd
p̃∗i (L

∗
γ)
⊗r
)
,

wherep̄i are the natural projections ofC̃2nm.
Similarly, the pullback of

⊗
ieven

p∗i ∧ (γ∗M̃ ⊗O(η))

by γ∗m is

ρ∗m

(
⊗
ieven

p̄∗i ∧ (M̃ ⊗ L∗γ(η̃))
)
⊗
(
⊗
ieven

p̃∗i (L
∗
γ)
⊗r
)
.
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Note thatn
∑
i D̃0i =

∑
i,j D̃ij andρ−1

1 (∆̃ij ) = D̃ij . Then, fromLemma 6.1, it follows

an isomorphism oñC × C̃

γ∗1O(n∆) � ρ∗1O

 n∑
i,j

∆̃ij


⊗ p̃∗1O(−nRγ)⊗ p̃∗2O(−nRγ)

� ρ∗1O

 n∑
i,j

∆̃ij


⊗ p̃∗1(L∗γ)⊗2n ⊗ p̃∗2(L∗γ)⊗2n.

Finally, a lengthy but straightforward calculation shows that

γ∗mO




∑
i<j

i+j=odd

∆ij −
∑
i<j

i+j=even

∆ij



⊗r

� ρ∗mO




∑
i<j

i+j=odd

∆̃ij −
∑
i<j

i+j=even

∆̃ij



⊗r̃

⊗
(
⊗
iall
p̃∗i (L

∗
γ)
⊗2r
)
.

Comparing these results with the expression ofρ∗m(α̃∗M̃O(Θ̃[Fη̃])) given byTheorem 3.6,
the statement follows. �

Observe thatLγ = OC̃ whenγ is non-ramified. Then, in this situation, a consequence of
the above theorem is the following identity between global sections of the line bundles in
the previous statement.

Theorem 6.4. Let γ be non-ramified andM̃ ∈ U(r̃, d̃) − Θ̃η̃ such thatγ∗M̃ ∈ U(r,0).
Then, for (x̃1, ỹ1, . . . , x̃m, ỹm) ∈ C̃2m, it holds that

θη(γ∗M̃ ⊗O(Z))
θη(γ∗M̃)

= θ̃η̃(M̃ ⊗ γ∗O(Z))
θ̃η̃(M̃)

,

where Z is the divisor
∑m
i=1(γ(x̃i)− γ(ỹi)) on C.

Proof. First of all, observe that

θ̃η̃(M̃ ⊗ γ∗O(Z)) = θ̃η̃(α̃M̃(ρm(x̃1, ỹ1, . . . , x̃m, ỹm))),

becauseγ−1(γ(x̃i)) = ρ1(x̃i). Then, the r.h.s. of the formula is a holomorphic global
section ofρ∗m(α̃∗M̃O(Θ̃[η̃])). On the other hand, the l.h.s. is a holomorphic global section
of γ∗m(α∗γ∗M̃O(Θ[η])). Hence, byTheorem 6.3, both sides are global sections of isomorphic

line bundles oñC2m.
Similar arguments to those of the proof ofTheorem 3.8reduce the proof to check that

the statement holds true when restricted to a fibreπ−1(z), whereπ : C̃2m → C̃2m−1 is
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the projection that forgets̃y1 andz is a point(x̃1, x̃2, ỹ2, . . . , x̃m, ỹm) ∈ C̃2m−1 such that
xi �= xj for all i �= j andyi = xi. For the sake of notation, we definex to beγ(x̃1).

Let us denote bỹp and q̃ the projections ofC̃ × C̃ onto its first and second factors,
respectively. Consider the bundle

M̃ := p̃∗(M̃(γ−1(x)+ η̃))⊗O(−D̃)

on C̃× C̃, whereD̃ :=∑j D̃0j. Using the sequence defined by the effective divisorD̃, we
obtain the following exact sequence:

0→ M̃→ p̃∗(M̃(γ−1(x)+ η̃))→ p̃∗(M̃(γ−1(x)+ η̃))⊗OD̃ → 0. (6.4)

SinceR1q∗(p̃∗(M̃(γ−1(x)+ η̃))) = 0, the restriction of the r.h.s. toπ−1(z) is given by the
determinant of the morphism

q̃∗(p̃∗(M̃(γ−1(x)+ η̃)))→ q̃∗(p̃∗(M̃(γ−1(x)+ η̃))⊗OD̃)

induced by the latter sequence.
We now compute the restriction of the l.h.s. in a similar way. Let us denote byp andq

the projections ofC× C̃ onto its first and second factors, respectively. LetM be the bundle
p∗(γ∗M̃ ⊗O(x + η))⊗O(−Γ) onC × C̃, whereΓ is the graph of the mapγ. The exact
sequence associated to the divisorΓ implies the exactness of the sequence

0→M→ p∗(γ∗M̃ ⊗O(x+ η))→ p∗(γ∗M̃ ⊗O(x+ η))⊗OΓ → 0. (6.5)

BeingR1q∗(p∗(γ∗M̃⊗O(x+η))) = 0, it follows that the restriction of the l.h.s. toπ−1(z)

is the determinant of the induced morphism:

q∗(p∗(γ∗M̃ ⊗O(x+ η)))→ q∗(p∗(γ∗M̃ ⊗O(x+ η))⊗OΓ ).

Bearing in mind the commutativity of the diagram:

it will suffice to conclude to show that the direct image byγ × Id of the sequence(6.4) is
the sequence(6.5).

The direct image of the sequence(6.4)by γ × Id is

0 → (γ × Id)∗(p̃∗(M̃(γ−1(x)+ η̃))⊗O(−D̃))→ (γ × Id)∗(p̃∗(M̃(γ−1(x)+ η̃)))
→ (γ × Id)∗(p̃∗(M̃(γ−1(x)+ η̃))⊗OD̃)→ 0,

because the mapγ × Id is finite.
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Recalling that(γ × Id)−1(Γ) = D̃, γ−1(η) = η̃ and using the projection formula and the
base change theorem for the case:

we conclude that the latter sequence coincides with the sequence(6.5).
Then, we know that both sections are equal up to a constant onC̃2m. This constant might

be evaluated onπ−1(z) by letting ỹ1 = x̃1, and it follows that it is equal to 1. �

Remark 6.5. Observe that the above theorem may be generalized for the ramified case.
This would require to know sections ofL⊗nγ = O((1/2)nRγ). Besides,Lemma 6.1allows

us to give a section of it in terms of the prime formsE andẼ because(1/2)nRγ is effective.

We finish with a similar study for the inverse image. LetM ∈ UC(r,0) be a vector bundle
onC. From Lemma 3.2.2 of[9] it turns out thatγ∗M ∈ U

C̃
(r,0). Consider the following

diagram:

Theorem 6.6. It holds that

(αM ◦ γm)∗O(Θ[η])⊗ γ∗mO

 ∑
i+j=odd

∆ij −
∑

i+j=even

∆ij



⊗r

� (α̃γ∗M)∗O(Θ̃[η̃])⊗O

 ∑
i+j=odd

∆̃ij −
∑

i+j=even

∆̃ij



⊗r

⊗
(
⊗
iall
(p̃∗i L

∗
γ)
⊗r
)
.

Proof. The claim follows from Theorem 3.6and from the fact thatγ∗OC(η) �
O
C̃
(η̃)⊗ L∗γ . �

Proposition 6.7. Suppose thatγ is non-ramified and letM ∈ UC(r,0) such thatθη(M) �= 0.
Then, for (x̃1, ỹ1, . . . , x̃m, ỹm) ∈ C̃2m, it holds that

θ̃η̃
(
γ∗M

(∑m
i=1(x̃i − ỹi)

))
θ̃η̃(γ

∗M)

∏
i<j

n−1∏
k=1

(Ẽ(x̃i, σ
k(x̃j))Ẽ(ỹi, σ

k(ỹj)))
r

= θη
(
M
(∑m

i=1(γ(x̃i)− γ(ỹi))
))

θη(M)

∏
i,j

n−1∏
k=1

Ẽ(x̃i, σ
k(ỹj))

r.
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Proof. One proceed similarly as inTheorem 6.4. �

Remark 6.8. It is worth pointing out that Proposition 5.1 of[4] follows fromTheorem 6.6
whenγ is ramified, degγ = 2 andr = 1.
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